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Abstract

In the past two decades a new modern scaling technique has emerged from the highly
developed theory on the Lie group of transformations. This new method has been
applied by engineers to several problems in hydrology and hydraulics including but not
limited to groundwater dynamics, sediment transport, and open channel hydraulics.5

This study attempts to clarify the relationship this new technology has with the
classical scaling method based on dimensional analysis, non dimensionalization, and
the Buckingham Π theorem. Key points of the Lie group theory, and the application of
the Lie scaling transformation, are outlined and a comparison is done with two classical
scaling models through two examples: unconfined groundwater flow and contaminant10

transport. The Lie scaling method produces an invariant scaling transformation of the
prototype variables which ensures the dynamics between the model and prototype
systems will be preserved. Lie scaling can also be used to determine the conditions
under which a complete model is dynamically, kinematically, and geometrically similar
to the prototype phenomenon. Similarities between the Lie and classical scaling15

methods are explained, and the relative strengths and weaknesses of the techniques
are discussed.

1 Introduction

Scaling is an important tool that is used extensively in engineering, mathematics, and
physics. With scaling, conclusions about the dynamics of a system can be based off of20

the dynamics of another system at a more convenient scale. This is extremely important
when it is necessary to understand interactions of systems whose precise governing
equations are either unknown or too difficult to work with directly. Scaling can be used to
build models of phenomena for study in the laboratory and has important implications in
our understanding of very large and very small scale phenomena. Examples of scaling25

in the sciences are numerous. Bluman and Anco (2002) explains that scaling was used
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to estimate the explosive shockwave of the atomic bomb in the 1940’s, Sedov (1993)
contains many examples in engineering, in hydrology Dawdy et al. (2012) and Gupta
et al. (2010) discuss scaling in flood frequency analysis, and in hydraulics Ercan et al.
(2014) use scaling in open channel flow.

The goal of any scaling method is to predict information on one scale from5

known information at another scale. This is done by scaling relevant variables so
that the dynamics of the system remain essentially unchanged. The different scaling
procedures each have a way of assigning relationships between the variables being
scaled. Three methods will be considered here. The first technique is a classical
scaling methodology based on dimensionless groups of variables found through the10

Buckingham Π theorem. The second technique determines relationships through
a scaling transformation of the governing equations for the phenomenon. The third
technique is based on a general theory that has characterized all invariant symmetry
transformations admitted by a system of equations. The third method is a relatively
new addition to modern scaling technology and is known as the Lie scaling method.15

This new method is applied and compared to results from classical scaling in order to
demonstrate its effectiveness and generality as a scaling technique.

The first technique is based on dimensional analysis, and the scaling is usually
referred to as dimensional scaling. The scaling relationships are determined based
on the units; e.g. dimensionless groups of variables can be formed and related to20

ratios between forces, characteristic lengths and times, fluxes, and other factors. There
are numerous dimensionless groups of variables that can be formed, and scaling of
the system is based on preserving the dimensionless groups. One of the most widely
used tools in dimensional scaling is the famous Buckingham Π theorem, explained in
detail in Sedov (1993) and a proof of the theorem is given in Bluman and Anco (2002).25

The theorem establishes the existence, number, and composition of dimensionless
groups for a given set of variables. Dimensional scaling has been applied extensively
in a wide range of problems and is the primary tool for scaling used by most scientists
and engineers.
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The second scaling technique relies on the governing equations of the system. In
such methods, scaling transformations of the governing equations are required to be
invariant in order to preserve the dynamics of the system. An intuitive invariant scaling
method known as modified inspectional analysis is the basis for physical models known
as sandbox models. Modified inspectional analysis is documented in Bear (1972). It5

is based on forming the scaling schemes for a system of differential equations by
enforcing invariance under the transformation for the scaled equations in the interior
of the flow domain.

A third scaling method is a special case of a theoretical technique developed by
mathematicians for symmetry analysis of differential equations. The basis for this10

general theory is the discovery that the set of invariant transformations have a special
group structure, known as the Lie group of transformations. This has led investigators
to develop an extensive theory completely characterizing all symmetry transformations
that hold a system of equations invariant. The Lie scaling methodology uses this
extensive mathematical background to provide an approach to obtain a physically15

based scaling transformation that depends on the system of equations modeling any
dynamical process expressed as an initial-boundary value problem.

The Lie group of transformations is well documented in many mathematical sources,
and has been applied by several engineers over the last few decades. An accessible
source of detailed mathematical explanation of the symmetry transformation theory20

applied to differential systems is Bluman and Anco (2002). Another good applied
reference is Olver (1986). An algorithm developed for finding symmetry transformations
using the group structure has been discussed in Cayar and Kavvas (2009a) and applied
by engineers in Cayar and Kavvas (2009b) to find symmetries in a heterogeneous
unconfined aquifer problem. Yung et al. (1994) used the Lie group method to classify25

symmetries in Richard’s equation for heterogeneous flow in the vadose zone. Scaling
of sediment transport problems using the Lie group method was done by Carr et al.
(2015). Lie scaling was applied to a variety of hydrological problems in Haltas and
Kavvas (2011).
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2 Application of the Lie scaling method.

The Lie scaling method relies on theory developed to characterize all symmetry
transformations that leave a system of equations invariant. A transformation x̄ = X(x;ε)
depends on a vector of parameters ε. The transformation leaves a system of equations
F(x) invariant if F(x) = F(x̄). The one parameter group of symmetry transformation5

will be considered in this study. The Lie scaling method isolates a subgroup of
the one parameter Lie group of point transformations. Theoretically, all members
of the Lie group of point transformations can be found using an algorithm, called
the Lie algorithm. In the case of scaling transformations, the general form of the
transformations is known. Invariance can be enforced through performing a change10

of variables on the original equations to the scaled variables and requiring that all
interior and boundary equations satisfy scaling invariance. It will also be required that
all known functions of scaled variables satisfy functional scaling relationships known
as self similarity (defined later). An example of the application of this Lie scaling will
be given in Sect. 2.2. A brief overview of the theory and the Lie algorithm will be given15

below.

2.1 Summary of group symmetry theory

For a given system of equations F (x) = 0, the set of one parameter transformations
which leaves F invariant (are admitted by F in the parlance) forms the algebraic
group structure. The transformations can be expressed using the differentials of20

the transformation parameter through a Taylor series. In this way the group of
transformations can be represented as an infinite series called the Lie series. The
Lie series is usually written in terms of differential operators, X = ξi∂/∂xi , where the
ξi (x) are the coefficients of the Taylor series. A compact expression is x̄ = eεXx.

In general, finding the Lie groups of symmetries admitted by a system of equations25

involves extending the operator above to include the independent and dependent
variables, as well as all derivates up to the differential order of the system. The

10201

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/10197/2015/hessd-12-10197-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/10197/2015/hessd-12-10197-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 10197–10219, 2015

Lie scaling vs.
classical scaling

J. Polsinelli and
M. L. Kavvas

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

coefficients of the extended operator can be shown to satisfy an overdetermined
system of partial differential equations. In some special cases the system of PDE
for the coefficients will be linear and homogeneous. Special cases include the
wave equation, nonlinear diffusion equations, and the advection-dispersion equations;
common equations for phenomena in hydrology and earth science. The solution to the5

overdetermined system of PDE allows the transformations admitted by F (x) = 0 to be
explicitly identified.

The main object of study here is the sets of scaling transformations. The general
form of a scaling transformation is known: x̄ = eαεx, ȳ = eβεy , i.e. the operators satisfy
X = αx∂/∂x+βy∂/∂y . Rather than going through the full Lie algorithm it is sufficient to10

simply check for invariance of F (x) = 0 under the scaling transformation. This involves
determining if there is a scaling transformation so that the invariance condition is
satisfied simultaneously on the complete system of equations. The scaling coefficients
are found in terms of a single scaling base ε, taken as the one and only parameter of
the transformation.15

2.2 An example on Lie scaling: application to an unconfined aquifer

As an example, consider a heterogeneous aquifer subject to a flux boundary condition
where the initial height of the saturated surface is ho. For simplicity the unconfined
groundwater equations will be modeled by the 2-D Dupuit approximation to the 3-D
conservation equation and free surface boundary condition. The Dupuit assumption is20

a good approximation when the slope of the free surface (or the hydraulic gradient) is
small. Scaling of the full 3-D system and nonlinear boundary condition is possible, but
it is relatively complex. Also, the scaling of the 3-D system is similar to the scaling of
the Dupuit approximation.

The Lie scaling transforms the entire system of equations: boundary, initial, and25

interior equations. The method begins by gathering all relevant flow or medium
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variables and scaling them according to the scaling parameter ε. In this example:{
x,y ,t,h,ho,K ,S,W ,q′

nf

}
→
{
εαx,εβy ,εχ t,εδh,ειho,εφK ,εγS,εηW ,εκq′

nf

}
.

S is the specific yield, W the external stress (e.g. pumping, recharge,
evapotranspiration), K is the saturated hydraulic conductivity of the aquifer, q′nf is
the specific discharge through the saturated thickness of the aquifer (per unit width5

[L2 T−1]), h is the height of the free surface (above a specified datum). The Dupuit
approximating equations can be written as:

S
∂h
∂t

=
∂
∂x

(
Kh

∂h
∂x

)
+
∂
∂y

(
Kh

∂h
∂y

)
+W . (1)

Applying the scaling transformation and rearranging the Dupuit equations in terms of
the scaled variables,10

εγ+δ−χ S̄
∂h̄

∂t̄
= εφ+2δ−2α ∂

∂x̄

(
K̄ h̄

∂h̄
∂x̄

)
+εφ+2δ−2β ∂

∂ȳ

(
K̄ h̄

∂h̄
∂ȳ

)
+εηW̄ , (2)

εφ+2δ−αK̄ h̄
∂h̄
∂x̄
n̄x̄ +ε

φ+2δ−βK̄ h̄
∂h̄
∂ȳ
n̄ȳ = ε

λq̄′ · n̄ = εκ q̄′
nf

, (3)

εδ h̄ = ειh̄o. (4)

The scaled flow equations produce conditions on the scaling exponents, the
external forcing, and the hydraulic conductivity. The scaling exponents must satisfy15

the equations:

γ +δ − χ =φ+2δ −2α,φ+2δ −2α =φ+2δ −2β = η (5)

φ+2δ −α = κ,ι = δ. (6)

In the event that any of the hydraulic or medium parameters are functions of scaled
quantities those functions must also satisfy scaling relationships. E.g. if K = K (x,y)20
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then K (ε−αx̄,ε−βȳ) = εφK̄ . Functions satisfying this condition are called self similar.
Anything that is a function of scaled variables must likewise be self similar in order
for invariance to be possible. Hydrologic stresses are a result of flow through the
unsaturated zone or pumping; both processes can vary substantially in space and
time. In certain flows, density and permeability may be spatially and/or time variable.5

Viscosity may be a function of temperature, fluid velocity, and space.
In order to relate the Lie scaling technique to a more classical framework, label the

prototype system variables with subscript p and variables in the model system with
subscript m. Then xm = εαxp and similarly for the other variables. The Eqs. (5) and (6)
can be expressed in terms of the ratios between model and prototype variables:10

Srhr

tr
=
Krh

2
r

x2
r

, xr = yr,
h2

r

x2
r

=
Wr

Kr
,
h2

r

xr
=
q′r
Kr

, hor = hr. (7)

The saturated hydraulic conductivity depends on properties of the medium and the
fluid. It is often related to the permeability of the medium, as well as the density
and viscosity of the fluid: K = kρg/µ. The density, permeability, and viscosity each
may vary as functions of space when the hydraulic conductivity varies. Each of these15

quantities may also vary with scale. The addition of these new variables must be
accounted for in the Lie scaling. The appropriate ratios will be added to the list of scaled
model-to-prototype quotients: kr = km/kp, ρr = ρm/ρp, gr = gm/gp, and µr = µm/µp.
Furthermore, Kr = krρrgr/µr. It will also be necessary to introduce the pore diameter
of the medium d , and the ratio dr = dm/dp. Gravity will be assumed constant in space20

and independent of scale, gr ≡ 1. The permeability is related to the to the square of the
pore diameter through a dimensionless quantity called the Darcy number, Vafai (2005).
Referring to these relations the first equation in Eq. (7) can be re-written:(
Srxr/tr

)2
grhr

d2
r

kr

x2
r

d2
r

=

(
Srxr/tr

)
ρrxr

µr
. (8)
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Notice the quantity on the right resembles the Reynolds number ratio with characteristic
velocity Vr = Srxr/tr, which is a measure of the horizontal fluid velocity through the pore
space; the characteristic length ratio is xr. The quantities on the left include the inverse
of the dimensionless Darcy number, defined as the ratio of the permeability to the
cross-sectional pore area. Also present is the ratio of the cross-sectional pore area to5

the horizontal area of the flow domain, and the ratio between the height of the phreatic
surface and the horizontal length of the domain. On the left-hand side of the equation
is a quantity that resembles the square of the Froude number ratio with characteristic
velocity ratio the same as the right-hand side and characteristic length as the horizontal
aspect ratio. This indicates the conditions under which dynamic and kinematic similarity10

are simultaneously preserved.
The third equation in Eq. (7) can be re-written as:

ρrWrhr

µr

kr

d2
r

d2
r

x2
r

=
W 2

r

grhr
(9)

Once again, the quantity on the left is related to the Reynolds number with velocity
W oriented in the vertical direction either in or out of the aquifer depending on the15

specific conditions, and characteristic length proportional to the height of the phreatic
surface, h. On the right, the dimensionless quantity is related to the square of the
Froude number.

The fourth equation in Eq. (7) can be manipulated similarly, here q′ is the discharge
per unit width. The characteristic velocity is related to the discharge, or specific20

discharge at the boundary.

(q′r/hr)ρrxr

µr

kr

d2
r

d2
r

x2
r

hr

xr
=
q′2r /h

2
r

grxr
(10)

The characteristic velocity is the specific discharge over the saturated height. The
Reynolds number can be seen on the left-hand side, the square of the Froude number
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on the right-hand side, and the characteristic lengths will be proportional to the
horizontal dimensions of the aquifer. The ratios between the pore area and the aquifer
area, and the saturated height to the horizontal extent serve as relations between the
dynamic quantities.

As may be seen from above the Lie scaling approach provides a grounded method5

for determining scaling conditions for invariance of a set of equations. Scale invariance
conditions may be phrased in terms of such quantities as the Reynolds number, Froude
number, and other useful non dimensional properties. This is useful when considering
design specifications of experiments and the nature of the forces that are preserved
after transformation to the scaled system.10

The Eqs. (8)–(10) give explicit relationships between the ratios of important
dimensionless quantities in hydrology and fluid dynamics. It allows investigators to
specify conditions in terms of the scaling of the flow domain (xr, yr), medium properties
(kr), fluid properties (ρr, µr), and external forcing (Wr, q

′
r). The scaling of these variables

may be chosen so that the system is both invariant and dynamically similar, e.g. Rer = 115

and Frr = 1. Under the constraints of invariance and dynamic similarity, the scalings of
the system (8)–(10) must satisfy:

Wr =
(
µrgr

ρr

) 1
3

from (9), (11)

Sr =
tr
√
grhr

xr
,hr =

(
µr

ρrxr

)2 1
gr

from (8), (12)

q′r = hr

√
grxr,xr =

(
µr

ρr

) 2
3
(

1
gr

) 1
3

from (10). (13)20

From Eqs. (8)–(10) the non-Froude, Reynolds terms require that kr = x
2
r which can

be stated as Dar = x
2
r /d

2
r . Dar is the ratio of the Darcy numbers for the model and
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prototype. Combining relevant quantities in Eqs. (11)–(13) gives:

hr = xr =
(
µr

ρr

) 2
3
(

1
gr

) 1
3

,Sr = tr

(
g2

r ρr

µr

) 1
3

,q′r =
µr

ρr
,Wr =

(
grµr

ρr

) 1
3

. (14)

This scaling scheme is trivial if gr = µr = ρr = tr = 1. For most practical problems on
Earth, gr ≡ 1. The kinematic viscosity can be modified in experimental setting. In
problems where the Darcy scale equations are upscaled to field, watershed, or regional5

scales the question is if the viscosity of the fluid changes as the scale increases.
The procedure above was structured to preserve two well known non dimensional

fluid groups as they are formed in the preceding analysis. Since xr = yr geometric
similarity will be preserved. Preserving both kinematic and dynamic non dimensional
groups was a choice that has substantially affected this analysis. In many problems10

preserving both dimensionless quantities may not be important. Whether they are
held invariant or not however, the two numbers are linked though Eqs. (8)–(10). This
relationship may be referenced to understand the effect of a scaling scheme on the
kinematic and dynamic similarity. It may be desirable for investigators to take either Frr
or Rer as design parameters in creating physical models or in upscaling the point scale15

equations, and observe the effect of scaling in the chosen variable on the unchosen
non dimensional group.

Other formulations may be of interest in terms of different characteristic velocities
and lengths. There are other dimensionless groups that are used in fluid dynamics
through porous media; one such number is the Péclet number, defined as the ratio of20

advective transfer rate to diffusive transfer rate. Investigation of the scaling implications
in terms of the Péclet number could prove most interesting for subsurface problems.
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3 Classical models and dimensional scaling

Dimensional scaling is based on the idea that non dimensional groups can be
formed based on the units of the quantities involved in a physical phenomenon.
Quantities are usually spatial and temporal lengths, areas, volumes, velocities, forces,
resistances/conductances, densities, etcetera. If the dominant forces and the quantities5

that the forces act on are known, then dimensionless groups are formed using those
forces and associated characteristic properties. This idea is formalized with the famous
Buckingham Π theorem which operates under assumptions that are true of any physical
problem Bluman and Anco (2002).

Dimensional analysis in fluid dynamics usually resolves to requiring geometric,10

kinematic, and/or dynamic similarity. Geometric similarity requires that all body/domain
dimensions have the same linear scale ratio. Kinematic similarity requires that the
velocity scale ratios are identical. Dynamic similarity requires that the force scale,
or mass scale, ratio be the same between the model and prototype. White (2011)
summarizes similarity scaling for incompressible flow according to the presence or15

absence of a free surface. For problems with no free surface, dynamic similarity
requires equality in the Reynolds numbers between the model and prototype. In
problems with a free surface, the model and prototype Reynold and Froude numbers
must be equal at least. In some cases the Webber and Euler numbers (inertial to
surface tension and pressure to inertia, respectively) must be equal as well.20

As an example, consider flow in a confined aquifer. Under usual conditions the flow
velocity is quite low, so advective effects are reduced and the viscous effects dominate
the problem. In this case, there is no free surface and the most important dimensionless
quantity is usually taken to be the Reynolds number, defined as the ratio of the inertial
forces to the viscous forces. Under the condition that the dynamics of the model be the25

same as the dynamics of the prototype, the ratio of the Reynolds numbers should be
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the same.

Vmlmρm

µm
=
Vplpρp

µp
(Dynamic Similarity)

In this dimensional analysis, the values are assigned to Vm, Vp, lm, lp, ρm, ρp, µm, µp that
are thought to be characteristic or representative to the system. Choosing appropriate
values is at the heart of the dimensional analysis scaling problem. The choices that are5

made often reflect quantities that are measured or observed.
For example, in a hydrologic study modeling the fate of water infiltrated into a hill

slope during a storm event, the rainfall rate at the surface can be measured, and the
discharge through a seepage face can be measured. These two values give indications
to the characteristic velocity of the water in the subsurface. The characteristic lengths10

will depend on the process. For the vertical infiltration through the hill slope, the
characteristic length may be the depth from the surface to the water table. Once the
water reaches the saturated zone, the nature of its movement changes from being
primarily vertical flow to horizontal flow. For flow in the saturated zone the characteristic
length will be related to the horizontal extent of the aquifer.15

As a second example consider flow of water through an open channel. Flows
like these have relatively high velocities and large Reynolds numbers, and the
dimensionless quantity thought to be of greatest importance is known as the Froude
number. The Froude number is the ratio of the inertial forces to the gravity forces.
Scaling using this ratio proceeds by equating:20

Vm√
gmlm

=
Vp√
gplp

. (Kinematic Similarity)

The characteristic velocities are usually taken to be the average velocity of the flow
in the channel and the length is usually taken to be the depth of the channel. For closed
channels the characteristic length is the hydraulic diameter of the channel.
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For the problem in Sect. 2.2, since the aquifer is unconfined there will be a free
surface and flow is relatively slow. In this case, the notion of Dynamic Similarity may
need to be modified to include equality of the relevant Froude number as well as the
Reynolds number, i.e. Kinematic Similarity and Dynamic Similarity must be satisfied
simultaneously.5

In typical problems, scaling is done either by Dynamic Similarity or Kinematic
Similarity. It is not usual for equality of both quantities to be satisfied simultaneously.
Generally, information relating the various dimensionless quantities is not available, so
the scaling of spatial and dynamic quantities cannot be easily done in such a way as
to preserve both kinematic and dynamic similarity.10

In the scaling problem for unconfined aquifer flow, the condition that the Reynolds
numbers between the model and prototype be the same is a condition of the scaling
scheme in Eq. (14) derived from conditions in Eqs. (8)–(10). This highlights the fact
that the constraints of classical scaling by equating the model and prototype ratios
of certain non dimensional variables may be added as conditions in the Lie scaling15

methodology. The question that must be investigated in any Lie scaling application is
whether a non trivial scaling is possible under both the conditions of invariance of the
interior and boundary equations, and dynamical/kinematic similarity. The dimensional
analysis using only the Reynolds number similarity will allow investigators a high
degree of freedom in model design, while potentially sacrificing kinematic similarity20

as well as invariance of the governing equations.
A second established approach for scaling is called modified inspectional analysis

and is documented in (Bear, 1972, Ch. 11). In this reference, the sandbox model is
based upon modified inspectional analysis. The sandbox model is a scaled physical
model of a subsurface zone. It consists of a rigid watertight container filled with a porous25

matrix. The materials which make up the porous matrix are determined by the designer
and the desired scaling properties. Materials can be sand, glass beads, crushed glass,
etc.
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The scaling procedure is very similar to the Lie scaling technique. Application of
the modified inspectional analysis to the groundwater problem in Sect. 2.2 begins with
gathering the twelve independent variables: x, y , t, h, k, µ, ρ, qx, qy , S, W , A where
A is the horizontal area and q is the Darcy flux. The variables are scaled and the
relationships between the model-prototype ratios are found according to Eq. (1):5

Wr =
kxrρrh

2
r

x2
r µr

=
kyrρrh

2
r

y2
r µr

=
Srhr

tr
, (15)

qxr =
kxrρrhr

µrxr
,qyr =

kyrρrhr

µryr
,qxr =

Srxr

tr
,qyr =

Sryr

tr
; (16)

Ar = Srxryr. (17)

Note that if the soil is isotropic then kx = ky = k. Isotropy and the middle two equations
in Eq. (15) implies that xr = yr.10

Combining the six independent equations requires six variables to be chosen
arbitrarily. For example, if xr, Sr, µr, ρr, Wr, and tr are chosen, then:

yr = xr,km = kp
Srx

2
r µr

hrtrρr
,hr =

Wrtr
Sr

.

qr and Ar given in Eqs. (16) and (17) respectively. Further restrictions can be imposed
on Eqs. 15–(17) such as similarity of the Reynolds, Froude, or Péclet numbers similarly15

to the analysis in Sect. 2.2.
The modified inspectional analysis is very similar in application to the Lie scaling,

producing similar results for the equations on the interior of the domain. This method is
difficult to apply to problems where the parameters k, µ, ρ, S, W vary as functions of
space, time, or with respect to flow variables. The manner in which the variables must20

scale when they are non constant is made clear through the Lie group theory.
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3.1 An example comparing Lie and Dimensional scaling: contaminant
transport

For a simple and straight forward example, consider a linear 1-D contaminant transport
problem, see Bear and Buchlin (1991) for a detailed explanation. The contaminant has
concentration c moving with velocity v and lumped dispersion-diffusion coefficient D.5

Assume that v ,D are constant values.
The concentration of the contaminant at location (x,t) is given by ∂c/∂t+v∂c/∂x =

D∂2c/∂x2. This problem will be analyzed using first Dimensional analysis and scaling,
then by Lie scaling.

Dimensional analysis can be applied very easily. The simplicity of the problem does10

not warrant the full Buckingham Π theorem application. It is clear that the characteristic
time scale is related to the velocity v and the characteristic length scale L: T = vt/L,
X = x/L. The non dimensional concentration equation is

∂c
∂T

+
∂c
∂X

=
D
vL

∂2c
∂X 2

. (18)

The dimensionless quantity vL
D is known as the Péclet number with characteristic length15

L: PeL.
The non dimensional equation indicates that the Péclet number has a profound effect

on the dynamics of the system. For large values of PeL Eq. (18) resembles a linear
advection equation. For small values of PeL the equation resembles the linear diffusion
equation. When scaling this problem, it is desirable to keep the same Péclet number of20

the model as the prototype, given the importance of the Pe on the dynamics. It will be
required that:

Pem =
vmLm

Dm
=
vpLp

Dp
= Pep. (19)

The Lie scaling approach begins with the direct scaling of all relevant variables and
parameters. Following the notation above the ratios xr = xm/xp, tr = tm/tp, vr, cr, and25
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Dr are formed and a change of variable to the model variables is performed. In order
for the equations to be invariant the following set of equations for the ratio relationships
must be satisfied:

cr

tr
=
crvr

xr
=
Drcr

x2
r

⇒ tr =
xr

vr
and

xrvr

Dr
= 1. (20)

The results for the equations on the interior domain are identical to the conclusions5

of the dimensional analysis and dimensional scaling. In addition to Eq. (20), the
Lie method requires the simultaneous scaling of the boundary conditions. Two
common boundary conditions in contaminant transport are prescribed concentration
and prescribed flux. Denoting Bc as the prescribed concentration boundary and Bf as
the prescribed flux boundary, these boundary conditions are generally written as:10

c(x,t) = g1(x,t) on Bc, (concentration)

cq−SD∂c
∂x

= g2(x,t) on Bf . (flux)

S is the porosity of the medium (= 1 if there is no porous matrix) and q is the
specific discharge at the boundary. g1 and g2 are the prescribed concentration and
flux respectively. A special case of the flux condition is on an impervious boundary. In15

this case q ≡ 0 and g2 ≡ 0 hence D∂c/∂x = 0 on Bf .
Invariance on the boundary requires that the functions g1(x,t) and g2(x,t) be self

similar functions with respect to the scaled variables x,t. It was shown in Ibragimov
(1995) that if f (ax,aβt) = aγf (x,t) then f (x,t) = xγΦ(tx−β) for an arbitrary function
Φ(·). Changing variables in the boundary conditions and enforcing invariance leads to20

the requirements that:

crqr = Sr
Drcr

xr
= g2r ⇒ qr = Sr

Dr

xr
and cr =

(gr/Sr)xr

Dr
. (21)
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Notice that gr/Sr is the velocity in the porous matrix at the boundary so (gr/Sr)xr/Dr
is a Péclet number ratio on the boundary with characteristic length scaled as xr.
In the case of an impervious boundary any scaling scheme preserves invariance
on the boundary. For a prescribed concentration at the boundary, the scaling of
the concentration must be the same as the scaling of the prescribed concentration;5

cr = g1r.
Comparing the Lie scaling and dimensional scaling it is seen that the results are

the same for the equation on the interior of the flow domain. The differences between
the methodologies stem from the treatment of the boundary by the Lie scaling. The
conclusions from the boundary dictate that the concentration must scale in the same10

way as the prescribed concentration (either or both at the boundary or the initial
concentration), and according to Eq. (21) simultaneously. The functional form of the
prescribed flux and concentration functions, g1(x,t) and g2(x,t) is restricted by the
condition of self similarity as well.

The Lie scaling gives a complete picture of the requirements that must be satisfied15

in order for the full model to preserve the dynamics of the prototype boundary value
problem. The other scaling methods focus on preserving a subset of dynamics, e.g. the
dynamical similarity, the kinematic similarity, or invariance for the interior equations.
The dimensional scaling methods do not consider parameter functions as satisfying
functional scaling relationships.20

4 Conclusions

The three scaling techniques were described, applied, and compared. Each method
will briefly be summarized below and comments made on each method’s strengths
and weaknesses.

The classical scaling method and most widely used technique is known as25

dimensional scaling. The basics of the method is an analysis through non
dimensionalization when equations describing the governing dynamics are known, and
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applying the Buckingham Π theorem when governing equations are either not known
or poorly understood.

The relative strengths of this method are its universal applicability, ease of
application, and identification of the important non dimensional parameter groups in
a system and the effect they have on the solution process in the system. It is extremely5

useful to be able to apply the Buckingham Π theorem to analyze a problem about
which very little is known. In cases where the closed form equations are not available
to model dynamics, very basic information may be available on variables, parameters,
and process that contribute to a phenomenon. Gathering the units for these quantities
is enough to apply the Buckingham Π theorem and make judgements on modeling10

and scaling of such systems. In cases where governing equations are known and
understood, dimensional analysis on the equations similar to the example in Sect. 3.1
can be used to derive the relevant dimensionless parameter groups and determine
their effect on the system of equations.

The weakness of the classical dimensional scaling lies in the limited detail gained15

through an analysis. Generally, dimensional analysis is only applied to the dynamics
in the interior of the domain and not to the boundary phenomena. This results in the
neglect of influences from the boundary, which can be substantial in many problems.
Dimensional scaling also overlooks the need for parameter functions or processes
depending on variables that are being scaled to satisfy self similarity conditions in order20

to preserve the dynamics of the system. This is somewhat a strength and a weakness.
It is a strength in that it gives the modeler a larger amount of freedom in creating the
model. It is a weakness because it fails to identify the conditions in which a model
system is truly a scaled version of the prototype, i.e. when a scaling transformation is
invariant.25

The modified inspectional analysis is very similar to the Lie scaling method both in
development and in application. It is a somewhat intuitive version of the Lie scaling
technique. It operates by examining the governing equations, applying a scaling
transformation to the variables in the system, and enforcing invariance of the scaling
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transformation. Similarly to the dimensional scaling, this method does not explicitly
consider that parameters or secondary processes that are functions of the scaled
state variables of the system need to satisfy self similarity relationships. Rather, model
processes can be chosen to have different dynamical properties than the prototype
processes, Bear (1972). E.g. an aquifer with an anisotropic hydraulic conductivity can5

be modeled as an isotropic aquifer.
The Lie scaling technique is a powerful method based on a well developed

mathematical theory. In fact, the Lie scaling is an instance of a much larger
class of invariant transformations which act on a system. In application, it involves
development of the set of model variables by scaling all quantities in the prototype10

system, performing the change of variables in the prototype governing equations,
and determining the precise scaling relationships by enforcing invariance on both the
interior and boundary equations. Note that the scaling transformation may also be
found by applying the Lie algorithm, outlined above and described in detail in Bluman
and Anco (2002), to determine the scaling transformation as well as the non scaling15

invariant transformations.
The strength of the Lie scaling technique is it gives a complete picture as to the set

of conditions that a complete model must satisfy in order to preserve the dynamics
of the prototype system. The precise nature of the dynamics to be preserved, e.g.
kinematic similarity, dynamical similarity, etc, can be explored and specified along with20

the general invariance of the transformation on the system of equations. It will not
necessarily always be the case that a non trivial scaling is possible which preserves all
similarity relationships, but the simple fact that this can be unambiguously determined
for the set of all possible invariant scaling transformations is itself fundamental. The Lie
scaling approach requires that any known function or process that depends on scaled25

variables satisfy a self similarity relationship. Investigation of when functions will satisfy
self similarity relationships which gives insight into the applicable extent of scaling
transformations and the regimes in which multi scale models must be developed
for a particular problem. Particularly for hydrological phenomena, investigations have
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concluded that certain medium and fluid parameters, such as the hydraulic conductivity,
undergo fundamental changes in their distribution as the scale increases from the pore
scale to the watershed scale (and above) Kavvas (1999), Meerschaert et al. (2013).

The Lie scaling considers the complete model, meaning the interior and boundary
conditions, enforcing invariance in scaling for all regions in the problem. This ensures5

that the effects of the boundary conditions will be accounted for in preservation of the
dynamics. It also provides a link between the flow problems in domains adjacent to the
problem domain. E.g. for the investigation of a scaled model for a subsurface saturated
zone receiving recharge from an unsaturated zone, either the forcing function in the
Dupuit approximating equations, or the boundary condition in the full 3-D nonlinear10

problem will require self similarity of the flow in the unsaturated zone. This is important
for considering coupling dynamics between different systems. Examples include sea
water intrusion into the groundwater system and the interaction of regional climate
models with groundwater.

The Lie scaling method requires the governing equation for both the interior and15

the boundaries to be known, and the functional scaling properties for any variable
dependent parameters to be known as well. Models based on the Lie scaling must
include medium and flow parameters that have identical (scaled) structure to the
prototype. This may introduce technical difficulties in producing precisely scaled
physical models in the laboratory. The scaling procedure must be applied to problems20

individually. Any change in boundary conditions, initial conditions, flow, or medium
parameters may significantly alter the scaling structure and existence of invariant
transformations.
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